Z = 4

Mo  $K\alpha$  radiation

 $0.28 \times 0.09 \times 0.06 \ \text{mm}$ 

 $\mu = 0.30 \text{ mm}^-$ 

T = 296 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-(3-Oxo-3,4-dihydro-2*H*-1,4-benzothiazin-4-yl)acetamide

#### Azher Saeed,<sup>a</sup>\* Zaid Mahmood,<sup>a</sup> Shiyao Yang,<sup>b</sup> Muhammad Salim<sup>a</sup> and Muhammad Saleem Akhtar<sup>c</sup>

<sup>a</sup>Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, <sup>b</sup>Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and <sup>c</sup>Department of Chemistry, Govt. Islamia College, Civil Lines, Lahore, Pakistan Correspondence e-mail: azherch82003@yahoo.com

Received 28 August 2010; accepted 10 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.107; data-to-parameter ratio = 17.9.

In the title compound,  $C_{10}H_{10}N_2O_2S$ , the thiazine ring approximates to an envelope form with the S atom in the flap position. The amide group attached to the acetate group is almost perpendicular to the mean plane of the thiazine ring [dihedral angle = 88.83 (8)°]. In the crystal, inversion dimers linked by pairs of  $N-H\cdots O$  hydrogen bonds occur. Further  $N-H\cdots O$  and  $C-H\cdots O$  hydrogen bonds link the dimers into a three-dimensional network.

#### **Related literature**

For a related structure and background references, see: Saeed *et al.* (2010). For graph-set notation, see: Bernstein *et al.* (1995)



#### **Experimental**

Crystal data C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>S

 $M_r = 222.26$ 

Monoclinic,  $P2_1/c$  a = 8.0652 (6) Å b = 4.8415 (3) Å c = 26.1517 (19) Å  $\beta = 94.798$  (4)° V = 1017.58 (12) Å<sup>3</sup>

#### Data collection

| Bruker Kappa APEXII CCD                | 11611 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2544 independent reflections           |
| Absorption correction: multi-scan      | 1693 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2007)                 | $R_{\rm int} = 0.039$                  |
| $T_{\min} = 0.921, \ T_{\max} = 0.982$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.107$               | independent and constrained                                |
| S = 1.02                        | refinement                                                 |
| 2544 reflections                | $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 142 parameters                  | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ |

# Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                       | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N2-H1N\cdotsO1^{i}$ $N2-H2N\cdotsO2^{ii}$ $C8-H8B\cdotsO1^{iii}$ | 0.87 (3) | 2.18 (3)                | 3.026 (2)    | 164 (2)                              |
|                                                                   | 0.84 (3) | 2.04 (3)                | 2.873 (2)    | 174 (2)                              |
|                                                                   | 0.97     | 2.57                    | 3.532 (2)    | 173                                  |

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y + 1, z; (iii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge Higher Education Commission of Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN Code: 042-120614-PS2-128).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5628).

#### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, 02289–02290.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2567 [doi:10.1107/S1600536810036305]

### 2-(3-Oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetamide

#### A. Saeed, Z. Mahmood, S. Yang, M. Salim and M. S. Akhtar

#### Comment

As part of our ongoing studies of 1,4-thiazine compounds (Saeed *et al.*, 2010) we have synthesized 2-(3-oxo-2,3-dihydro benzo[b][1,4]thiazin-4-yl)acetamide for derivaziation and we report here the structure of the title compound.

The bond lengths and bond angles of the structure of the title compound is in comparison with our previously published structure of 2-(3-Oxo-3,4-dihydro-2*H*-1,4-benzothiazin-4-yl)acetohydrazide (II) (Saeed *et al.*, 2010). These molecules only differ in amide (I) and hydrazide (II) groups attached to carbonyl carbon of acetate. The dihedral angle between the two rings C1–C6 and C1/C6/N1/C7/C8/S1 are almost same in these molecules i.e. 17.47 (0.09)° and 16.77 (0.10)° respectively. The amide group C9/C10/O2/N2 attached to the thiazine ring is oriented at dihedral angle of 72.05 (0.08)° and 88.83 (0.08)° with respect to the aromatic and thiazine ring. The amido hydrogens atoms are involved N–H…O type interactions with the oxygens of two different molecules. The N–H…O and weak C–H…O form dimers which results in 16 members ring motif  $R_2^2(16)$  (Bernstein *et al.*, 1995) along the b axes.

#### Refinement

The C-H H-atoms were positioned gemetrically with C—H = 0.93 Å for aromatic and C—H = 0.97 Å for the methylene carbon atoms and were refined using a riding model with  $U_{iso}(H) = 1.2 U_{eq}(C)$ . The N-H H atoms were located in difference map with N—H= 0.84 (4)–0.87 (3) Å,  $U_{iso}(H) = 1.2$  for N atoms.

#### Figures



Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.



Fig. 2. The crystal packing of (I) with intermolecular hydrogen bonds shown by dashed lines. The hydrogen atom not involved in hydrogen bonding have been omitted for clarity.

#### 2-(3-Oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetamide

F(000) = 464

 $\theta = 2.5 - 24.3^{\circ}$ 

 $\mu = 0.30 \text{ mm}^{-1}$ T = 296 K

Needle, colorless

 $0.28\times0.09\times0.06~mm$ 

 $D_{\rm x} = 1.451 \ {\rm Mg \ m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2429 reflections

#### Crystal data

C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>S  $M_r = 222.26$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 8.0652 (6) Å b = 4.8415 (3) Å c = 26.1517 (19) Å  $\beta = 94.798$  (4)° V = 1017.58 (12) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker Kappa APEXII CCD diffractometer                               | 2544 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 1693 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.039$                                                     |
| $\varphi$ and $\omega$ scans                                         | $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2007) | $h = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.921, \ T_{\max} = 0.982$                               | $k = -6 \rightarrow 6$                                                    |
| 11611 measured reflections                                           | $l = -34 \rightarrow 34$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.107$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.02                 | $w = 1/[\sigma^2(F_0^2) + (0.0425P)^2 + 0.2819P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| 2544 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 142 parameters                  | $\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$                               |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$                          |

#### Special details

**Experimental**. To a solution of (1.56 g)ethyl 2-(3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)- acetate in 10.0 ml ethanol, 5.0 ml of 33% ammonia was added and the mixture was left for a week at room temperature. The crystals of 2-(3-oxo-2,3-dihydrobenzo[1,4]thiazin-4-yl)acetamide appeared were filtered, washed with water and dried.(M.p 475k)

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| x             | У                                                                                                                                                                                                                                                                                                                                    | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $U_{\rm iso}*/U_{\rm eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.3288 (2)    | 0.0539 (4)                                                                                                                                                                                                                                                                                                                           | 0.31875 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0388 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.4502 (3)    | -0.1224 (4)                                                                                                                                                                                                                                                                                                                          | 0.30259 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0529 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.4358        | -0.2023                                                                                                                                                                                                                                                                                                                              | 0.2702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.063*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.5914 (3)    | -0.1799 (5)                                                                                                                                                                                                                                                                                                                          | 0.33408 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0584 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.6726        | -0.2962                                                                                                                                                                                                                                                                                                                              | 0.3228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.6121 (3)    | -0.0650 (5)                                                                                                                                                                                                                                                                                                                          | 0.38215 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0530 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.7083        | -0.1011                                                                                                                                                                                                                                                                                                                              | 0.4032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.4909 (2)    | 0.1035 (4)                                                                                                                                                                                                                                                                                                                           | 0.39939 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0437 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.5047        | 0.1759                                                                                                                                                                                                                                                                                                                               | 0.4324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.052*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3480 (2)    | 0.1667 (3)                                                                                                                                                                                                                                                                                                                           | 0.36793 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0338 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0611 (2)    | 0.3388 (4)                                                                                                                                                                                                                                                                                                                           | 0.36763 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0378 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0096 (2)    | 0.1364 (4)                                                                                                                                                                                                                                                                                                                           | 0.32606 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0416 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.1005       | 0.1838                                                                                                                                                                                                                                                                                                                               | 0.3108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0043        | -0.0472                                                                                                                                                                                                                                                                                                                              | 0.3407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2668 (3)    | 0.5317 (4)                                                                                                                                                                                                                                                                                                                           | 0.42842 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0419 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.2076        | 0.7047                                                                                                                                                                                                                                                                                                                               | 0.4225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.3851        | 0.5713                                                                                                                                                                                                                                                                                                                               | 0.4306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2227 (2)    | 0.4090 (3)                                                                                                                                                                                                                                                                                                                           | 0.47892 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0364 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.22507 (19)  | 0.3468 (3)                                                                                                                                                                                                                                                                                                                           | 0.38519 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0361 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.2048 (2)    | 0.5907 (4)                                                                                                                                                                                                                                                                                                                           | 0.51556 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0455 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.04093 (19) | 0.4905 (3)                                                                                                                                                                                                                                                                                                                           | 0.38558 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0541 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.2099 (2)    | 0.1598 (3)                                                                                                                                                                                                                                                                                                                           | 0.48455 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0621 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.15349 (7)   | 0.13660 (13)                                                                                                                                                                                                                                                                                                                         | 0.277323 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05234 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.170 (3)     | 0.539 (5)                                                                                                                                                                                                                                                                                                                            | 0.5448 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.063*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.200 (3)     | 0.758 (5)                                                                                                                                                                                                                                                                                                                            | 0.5079 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.063*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | x<br>0.3288 (2)<br>0.4502 (3)<br>0.4358<br>0.5914 (3)<br>0.6726<br>0.6121 (3)<br>0.7083<br>0.4909 (2)<br>0.5047<br>0.3480 (2)<br>0.0611 (2)<br>0.0096 (2)<br>-0.1005<br>0.0043<br>0.2668 (3)<br>0.2076<br>0.3851<br>0.2227 (2)<br>0.22507 (19)<br>0.2048 (2)<br>-0.04093 (19)<br>0.2099 (2)<br>0.15349 (7)<br>0.170 (3)<br>0.200 (3) | x $y$ $0.3288$ (2) $0.0539$ (4) $0.4502$ (3) $-0.1224$ (4) $0.4358$ $-0.2023$ $0.5914$ (3) $-0.1799$ (5) $0.6726$ $-0.2962$ $0.6121$ (3) $-0.0650$ (5) $0.7083$ $-0.1011$ $0.4909$ (2) $0.1035$ (4) $0.5047$ $0.1759$ $0.3480$ (2) $0.1667$ (3) $0.0611$ (2) $0.3388$ (4) $0.0096$ (2) $0.1364$ (4) $-0.1005$ $0.1838$ $0.0043$ $-0.0472$ $0.2668$ (3) $0.5317$ (4) $0.2076$ $0.7047$ $0.3851$ $0.5713$ $0.2227$ (2) $0.4090$ (3) $0.22507$ (19) $0.3468$ (3) $0.2048$ (2) $0.5907$ (4) $-0.04093$ (19) $0.4905$ (3) $0.2099$ (2) $0.1598$ (3) $0.170$ (3) $0.539$ (5) $0.200$ (3) $0.758$ (5) | x $y$ $z$ $0.3288 (2)$ $0.0539 (4)$ $0.31875 (7)$ $0.4502 (3)$ $-0.1224 (4)$ $0.30259 (9)$ $0.4358$ $-0.2023$ $0.2702$ $0.5914 (3)$ $-0.1799 (5)$ $0.33408 (10)$ $0.6726$ $-0.2962$ $0.3228$ $0.6121 (3)$ $-0.0650 (5)$ $0.38215 (9)$ $0.7083$ $-0.1011$ $0.4032$ $0.4909 (2)$ $0.1035 (4)$ $0.39939 (8)$ $0.5047$ $0.1759$ $0.4324$ $0.3480 (2)$ $0.1667 (3)$ $0.36763 (7)$ $0.0611 (2)$ $0.3388 (4)$ $0.36763 (7)$ $0.0096 (2)$ $0.1364 (4)$ $0.32606 (7)$ $-0.1005$ $0.1838$ $0.3108$ $0.0043$ $-0.0472$ $0.3407$ $0.2668 (3)$ $0.5317 (4)$ $0.4225$ $0.3851$ $0.5713$ $0.4306$ $0.2227 (2)$ $0.4090 (3)$ $0.47892 (7)$ $0.22507 (19)$ $0.3468 (3)$ $0.38519 (6)$ $0.2048 (2)$ $0.5907 (4)$ $0.51556 (7)$ $-0.04093 (19)$ $0.4905 (3)$ $0.38558 (6)$ $0.2099 (2)$ $0.1598 (3)$ $0.48455 (6)$ $0.170 (3)$ $0.539 (5)$ $0.5079 (9)$ |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

#### Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|----|-------------|-----------------|-----------------|-------------|-------------|--------------|
| C1 | 0.0372 (11) | 0.0433 (10)     | 0.0364 (10)     | -0.0020 (8) | 0.0064 (8)  | 0.0017 (8)   |
| C2 | 0.0504 (14) | 0.0582 (13)     | 0.0518 (13)     | 0.0043 (11) | 0.0148 (11) | -0.0085 (10) |
| C3 | 0.0427 (13) | 0.0595 (13)     | 0.0757 (17)     | 0.0117 (11) | 0.0204 (12) | 0.0056 (12)  |
| C4 | 0.0333 (12) | 0.0619 (13)     | 0.0638 (14)     | 0.0005 (10) | 0.0038 (10) | 0.0158 (11)  |
| C5 | 0.0363 (11) | 0.0515 (11)     | 0.0430 (11)     | -0.0067 (9) | 0.0009 (9)  | 0.0047 (9)   |
| C6 | 0.0341 (10) | 0.0320 (8)      | 0.0360 (9)      | -0.0051 (7) | 0.0064 (8)  | 0.0037 (7)   |

# supplementary materials

| C7              | 0.0421 (11)              | 0 0369 (9)  | 0 0354 (9)              | 0 0030 (8) | 0 0097 (8)  | 0.0096 (8)  |  |
|-----------------|--------------------------|-------------|-------------------------|------------|-------------|-------------|--|
| C8              | 0.0121(11)<br>0.0337(10) | 0.0509(3)   | 0.0391(9)<br>0.0389(10) | 0.0008 (9) | 0.0000 (8)  | 0.0090(0)   |  |
| C9              | 0.0567 (13)              | 0.0299 (9)  | 0.0395(10)              | -0.0068(9) | 0.0072 (9)  | -0.0014(8)  |  |
| C10             | 0.0422 (11)              | 0.0288 (9)  | 0.0378 (10)             | 0 0007 (8) | 0.0015(8)   | 0.0012(7)   |  |
| N1              | 0.0407 (9)               | 0.0342 (8)  | 0.0339 (8)              | -0.0020(7) | 0.0012(0)   | -0.0012(7)  |  |
| N2              | 0.0665 (13)              | 0.0331 (8)  | 0.0372 (9)              | -0.0014(8) | 0.0062(9)   | 0.0001(0)   |  |
| 01              | 0.0539 (10)              | 0.0549 (8)  | 0.0553 (9)              | 0.0169 (7) | 0.0163 (8)  | 0.0037 (7)  |  |
| 02              | 0.1082 (14)              | 0.0280 (7)  | 0.0531 (9)              | -0.0020(7) | 0.0254 (9)  | 0.0033 (6)  |  |
| S1              | 0.0471 (3)               | 0.0784 (4)  | 0.0311 (3)              | 0.0047 (3) | 0.0010 (2)  | -0.0017 (2) |  |
|                 |                          |             |                         |            |             |             |  |
| Geometric paran | neters (Å, °)            |             |                         |            |             |             |  |
| C1—C2           |                          | 1.391 (3)   | C7—N                    | 1          | 1           | .364 (2)    |  |
| C1—C6           |                          | 1.394 (3)   | С7—С                    | 8          | 1           | .496 (3)    |  |
| C1—S1           |                          | 1.754 (2)   | C8—S                    | 1          | 1           | .794 (2)    |  |
| C2—C3           |                          | 1.377 (3)   | С8—Н                    | 8A         | 0           | .9700       |  |
| С2—Н2           |                          | 0.9300      | С8—Н                    | 8B         | 0           | .9700       |  |
| C3—C4           |                          | 1.372 (3)   | C9—N                    | 1          | 1.          | .459 (2)    |  |
| С3—Н3           |                          | 0.9300      | С9—С                    | 10         | 1.          | .517 (3)    |  |
| C4—C5           |                          | 1.377 (3)   | С9—Н                    | 9A         | 0           | .9700       |  |
| C4—H4           |                          | 0.9300      | С9—Н                    | 9B         | 0           | .9700       |  |
| C5—C6           |                          | 1.393 (3)   | C10—                    | 02         | 1.          | .221 (2)    |  |
| С5—Н5           |                          | 0.9300      | C10—                    | N2         | 1           | .318 (2)    |  |
| C6—N1           |                          | 1.422 (2)   | N2—H                    | 1N         | 0           | 0.87 (3)    |  |
| C7—O1           |                          | 1.225 (2)   | N2—H                    | 2N         | 0           | .84 (3)     |  |
| C2—C1—C6        |                          | 119.62 (19) | С7—С                    | 8—H8A      | 1           | 09.4        |  |
| C2-C1-S1        |                          | 120.25 (16) | S1—C                    | 8—H8A      | 1           | 09.4        |  |
| C6-C1-S1        |                          | 120.14 (15) | С7—С                    | 8—H8B      | 1           | 09.4        |  |
| C3—C2—C1        |                          | 120.7 (2)   | S1—C                    | 8—H8B      | 1           | 09.4        |  |
| С3—С2—Н2        |                          | 119.7       | H8A—                    | -C8—H8B    | 1           | 08.0        |  |
| С1—С2—Н2        |                          | 119.7       | N1—C                    | 9—C10      | 1           | 12.25 (14)  |  |
| C4—C3—C2        |                          | 119.8 (2)   | N1—C9—H9A               |            | 1           | 09.2        |  |
| С4—С3—Н3        |                          | 120.1       | C10—                    | С9—Н9А     | 1           | 09.2        |  |
| С2—С3—Н3        |                          | 120.1       | N1—C                    | 9—H9B      | 1           | 09.2        |  |
| C3—C4—C5        |                          | 120.3 (2)   | C10—                    | С9—Н9В     | 1           | 09.2        |  |
| C3—C4—H4        |                          | 119.8       | H9A—                    | -С9—Н9В    | 1           | 07.9        |  |
| С5—С4—Н4        |                          | 119.8       | 02—0                    | 10—N2      | 11          | 23.82 (18)  |  |
| C4—C5—C6        |                          | 120.8 (2)   | 02—0                    | 10—С9      | 1           | 21.34 (17)  |  |
| С4—С5—Н5        |                          | 119.6       | N2—C                    | 10—С9      | 1           | 14.82 (15)  |  |
| С6—С5—Н5        |                          | 119.6       | C7—N                    | 1—C6       | 123.91 (15) |             |  |
| C5—C6—C1        |                          | 118.77 (17) | C7—N                    | 1—C9       | 1           | 15.64 (16)  |  |
| C5—C6—N1        |                          | 120.77 (17) | C6—N                    | 1—С9       | 1           | 20.03 (16)  |  |
| C1—C6—N1        |                          | 120.44 (17) | C10—                    | N2—H1N     | 1           | 20.5 (16)   |  |
| 01—C7—N1        |                          | 121.15 (18) | C10—                    | N2—H2N     | 1           | 18.6 (16)   |  |
| 01—C7—C8        |                          | 121.10 (19) | H1N—                    | N2—H2N     | 1           | 19 (2)      |  |
| N1—C7—C8        |                          | 117.75 (16) | C1—S                    | I—C8       | 9.          | 5.57 (9)    |  |
| C7—C8—S1        |                          | 111.06 (13) |                         |            |             |             |  |
| C6-C1-C2-C3     | 3                        | -2.0 (3)    | N1—C                    | 9—C10—N2   | -           | 158.55 (18) |  |
| S1—C1—C2—C3     | 3                        | 177.41 (17) | 01—0                    | 7—N1—C6    | 1           | 76.58 (16)  |  |

| C1—C2—C3—C4  | 0.8 (3)      | C8—C7—N1—C6  | -2.8 (2)     |
|--------------|--------------|--------------|--------------|
| C2—C3—C4—C5  | 1.2 (3)      | O1—C7—N1—C9  | 4.0 (2)      |
| C3—C4—C5—C6  | -1.9 (3)     | C8—C7—N1—C9  | -175.37 (15) |
| C4—C5—C6—C1  | 0.6 (3)      | C5-C6-N1-C7  | -153.56 (17) |
| C4—C5—C6—N1  | -178.24 (17) | C1—C6—N1—C7  | 27.6 (2)     |
| C2-C1-C6-C5  | 1.3 (3)      | C5—C6—N1—C9  | 18.7 (2)     |
| S1—C1—C6—C5  | -178.14 (14) | C1C6N1C9     | -160.18 (16) |
| C2-C1-C6-N1  | -179.83 (17) | C10—C9—N1—C7 | 78.0 (2)     |
| S1-C1-C6-N1  | 0.7 (2)      | C10-C9-N1-C6 | -94.8 (2)    |
| O1—C7—C8—S1  | 136.66 (16)  | C2-C1-S1-C8  | 142.29 (17)  |
| N1—C7—C8—S1  | -43.93 (19)  | C6—C1—S1—C8  | -38.29 (16)  |
| N1—C9—C10—O2 | 23.3 (3)     | C7—C8—S1—C1  | 57.82 (15)   |
|              |              |              |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-----------------------------|-------------|--------------|--------------|---------|
| N2—H1N····O1 <sup>i</sup>   | 0.87 (3)    | 2.18 (3)     | 3.026 (2)    | 164 (2) |
| N2—H2N····O2 <sup>ii</sup>  | 0.84 (3)    | 2.04 (3)     | 2.873 (2)    | 174 (2) |
| C8—H8B····O1 <sup>iii</sup> | 0.97        | 2.57         | 3.532 (2)    | 173.    |
|                             |             |              |              |         |

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*.





